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Abstract

We analyze a log-log interpolant for 2D EOS lookups, where the EOS
independent variables are, say, T and ρ. If the data f(Ti, ρj) are in the
form of a power law, even locally, the interpolant is exact. It and its
derivatives are continuous. Derivatives are computed by analytically dif-
ferentiating the interpolant. The partial ∂f/∂ρ is a continuous function
of T . Similarly, ∂f/∂T is continuous wrt ρ. For a sufficiently fine grid in,
e.g., T , the discontinuity of ∂f/∂T is of order ε2, where Ti−1/Ti = 1 − ε.

1 Warning!

This is an incomplete working document.

It has not gone through Review & Release.

Please do not quote, copy, nor distribute.

2 Nomenclature

Unless noted otherwise, symbols have the following meaning:

αT , αρ – powers for log-log interpolant
e – specific energy
f – stand-in for energy or pressure
i – energy or temperature index

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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3 INTRODUCTION 2

I – total number of i indexes
j – density index
J – total number of j indexes
p – pressure
T – temperature
τ – temperature Ti−1/Ti ratio
ρ – mass density
r – density ρj−1/ρj ratio
∆t – timestep

3 Introduction

This note grew out of difficulties encountered running a radiation hydrodynamic
code with a user-supplied Equation-of-State (EOS). Although the code typically
runs using a variety of EOS libraries, it also has an option for the user to supply
his/her own. All (?) that’s required is to provide energy e and pressure p as
functions of temperature T and density ρ as well as the four derivatives, e.g.,
∂e/∂ρ. The derivatives, presumably, are used to obtain the sound speed in order
to compute a stable timestep ∆t. (The hydrodynamic package is temporally
explicit.)

In our simulations, initially the code ran well, for thousands of steps. The
timestep is set by choosing the smallest from a collection supplied by the in-
dividual packages (hydrodynamics, radiation.) Apparently, late in time, the
hydrodynamic package’s ∆t is chosen. Unfortunately, that timestep, although
by then the smallest, was still too large. The run developed wrinkles reminiscent
of violating the Courant condition; first in pressure and velocity, then spreading
to density and temperature. The only way to eliminate the “ringing” was by
manually reducing ∆t.

The EOS in question comes in non-standard form. Text files supply the ratios
T/e and p/ρe on a rectangular grid. The independent variables (equally log-
spaced 1D arrays) are density ρj and energy ei (not temperature Ti) where i =
1, . . . , I and j = 1, . . . , J . We inverted the tables; replaced ei with temperature
Ti and created 2D arrays pi,j and ei,j . Luckily, at both the lowest and highest
(original) energies ei, the T/e and p/ρe ratios are independent of density. Hence,
the “edges” of the inverted Ti, ρj grid coincide with the original. The ρj grid
is not changed. The dimension of the new 1D Ti array is the same as the
original ei array, and is also equally log-spaced, i.e., Ti−1/Ti = τ , a constant.
The inverted pi,j and ei,j values are generated by bilinearly log-interpolating
the original T/e and p/ρe ratios. Derivatives, such as ∂e/∂ρ, were generated
on the same inverted (Ti, ρj) using second order divided differences; one-sided,
first order on the edges.
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The derivatives we originally supplied were apparently inaccurate. This note
describes an alternative. Derivatives are computed by analytically differentiat-
ing the (log-log) interpolant. In a sense, such derivatives are “exact.”

4 Code requirements; interpolant

To comply with code requirements, at initialization, 1D arrays Ti and ρj (of
size I and J , resp.,) and 2D arrays pi,j and ei,j (of size I × J) are read in.
Pressures and energies are computed as follows. For each T and ρ, a lookup
function supplies indexes i and j into the EOS table s.t.,

Ti−1 ≤ T < Ti and ρj−1 ≤ ρ < ρj .

We then calculate powers

αT = αT (T )
.
=

log(T/Ti)

log(Ti−1/Ti)
and αρ = αρ(ρ)

.
=

log(ρ/ρj)

log(ρj−1/ρj)
. (1)

Thus, T = TαTi−1T
1−αT
i and ρ = ρ

αρ
j−1ρ

1−αρ
j .

The powers αT and αρ define the interpolant. If fi,j represents either ei,j or
pi,j , the interpolated value

log f = αTαρ log fi−1,j−1 + (1− αT )αρ log fi,j−1 +

(1− αT )(1− αρ) log fi,j + αT (1− αρ) log fi−1,j . (2)

There are two alternate expressions,

log f = log(fαTi−1,j f
1−αT
i,j ) + αρLT (3)

log f = log(f
αρ
i,j−1 f

1−αρ
i,j ) + αTLρ , (4)

where LT and Lρ, functions of only αT and αρ, resp., may be written as

LT = log(fi,j−1/fi,j) + αTLi,j and Lρ = log(fi−1,j/fi,j) + αρLi,j , (5)

where

Li,j = log

(
fi−1,j−1 fi,j
fi−1,j fi,j−1

)
.

Hence, constituents of LT and Lρ, e.g., Li,j , are “edge-” and “cell-centered”
data on the EOS (Ti, ρj) grid; hence, can be pre-computed.

The Eq.(2) interpolant has the convenient feature that if the data are in the
form of a power law, i.e., if f = aρbT c, for constant a, b, c, even locally, then
Eq.(2) returns the exact value.

Derivatives are computed by differentiating the interpolant. Since LT is
independent of αρ and Lρ is independent of αT ,

∂f

∂ρ
= fLT

∂αρ
∂ρ

=
fLT /ρ

log(ρj−1/ρj)
(6)
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and
∂f

∂T
= fLρ

∂αT
∂T

=
fLρ/T

log(Ti−1/Ti)
. (7)

Equations (6) and (7) hold inside an EOS (T, ρ) cell with “upper” indexes (i, j).

For fixed ρ, ∂f/∂ρ is a continuous function of T . The assertion may be
proved by brute force or by recalling the definition,

∂f(T, ρ)

∂ρ
= lim

∆ρ→0

f(T, ρ+ ∆ρ)− f(T, ρ)

∆ρ
.

Since f(T, ρ) is a continuous function of T , so is f(T, ρ + ∆ρ). The difference
of continuous functions is a continuous function, Q.E.D.

Similarly, for fixed T , ∂f/∂T is a continuous function of ρ. We consider
continuity of the other derivatives in the next section.

5 Equally log-spaced data

In our case, the (Ti, ρj) EOS grid is equally log-spaced. Hence, if we define
constants r = ρj−1/ρj and τ = Ti−1/Ti, the derivatives become

∂f/∂T = fLρ/(T log τ) and ∂f/∂ρ = fLT /(ρ log r) . (8)

We now consider the continuity of ∂f/∂T wrt T . Equation (8) holds inside
a cell with “upper indexes” i and j. For continuity wrt T , we compare the
expression across an i “line,” i.e., across (i, j) and (i+ 1, j) cells. Equation (8)
implies we need only check continuity of Lρ. For the (i, j) cell, as T → Ti (from
the left), Eq.(5) implies,

Lρ → log(fi−1,j/fi,j) + αρLi,j
.
= L−ρ .

And for the (i+ 1, j) cell, as T → Ti (from the right),

Lρ → log(fi,j/fi+1,j) + αρLi+1,j
.
= L+

ρ .

Continuity depends on the difference,

L+
ρ − L−ρ = logFi,j + αρ log(Fi,j−1/Fi,j) ,

where the grid function

Fi,j = f2
i,j/(fi+1,j fi−1,j) .

If the data are in the form of a power law, i.e., if fi,j = aT bi ρ
c
j for constants a,

b and c, Fi,j = 1 for all i and j; hence, L+
ρ − L−ρ = 0, which proves continuity

wrt T . A similar argument applies to the continuuity of ∂f/∂ρ wrt ρ.
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For data not in the form of a power law, using Taylor’s theorem,

fi−1,j = fi,j + ∆T−(∂f/∂T )i,j +O(∆T 2
−)

fi+1,j = fi,j + ∆T+(∂f/∂T )i,j +O(∆T 2
+) .

For the equally log-spaced T mesh,

∆T− = Ti(τ − 1) and ∆T+ = Ti(τ
−1 − 1) .

Hence,
Fi,j = 1/[1 + Ti (∂f/∂T )i,j f

−1
i,j (τ − 1)2/τ +O(∆T 2)] .

Assuming a sufficiently fine grid, s.t., τ = 1− ε, with ε small,

Fi,j = 1− Ti (∂f/∂T )i,j f
−1
i,j ε

2 +O(ε2) .

In other words, Fi,j = 1 + O(ε2). Consequently, Fi,j/Fi,j−1 also equals 1 +
+O(ε2). Thus,

L+
ρ − L−ρ = O(ε2) + αρO(ε2) = O(ε2) ,

since 0 ≤ αρ < 1.

Hence, for a sufficiently fine grid of the independent variable Ti, the discon-
tinuity of ∂f/∂T wrt T , is of order ε2, where Ti−1/Ti = 1− ε.

A similar argument holds for the discontinuity of ∂f/∂ρ wrt ρ. Unfortu-
nately, for our EOS, while the Ti grid is relatively fine (εT = 0.14), the ρj grid
is relatively coarse (ερ = 0.9). However, the discontinuity is partly offset by the
relatively slow variation e and p have wrt ρ.1

6 Conclusion

We analyzed a log-log interpolant for 2D EOS lookups, where the EOS inde-
pendent are T and ρ. If the data f(Ti, ρj) are in the form of a power law,
even locally, the interpolant is exact and it and its derivatives are continuous.
The interpolant of ∂f/∂ρ is a continuous function of T . Similarly, ∂f/∂T is a
continuous function ρ. For a sufficiently fine grid in, say, T , the discontinuity
of ∂f/∂T is of order ε2, where Ti−1/Ti = 1− ε.
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1Generally, the EOS is closely approximated by an ideal gas law, where e is independent
of ρ and p ∝ ρ. Thus, it may be better to tabulate q = p/ρ instead of p. Then, since q varies
slowly with ρ, ∂q/∂ρ should be small. And the required derivative ∂p/∂ρ = q + ρ∂q/∂ρ.


